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Introduction

m Epidemic models are important and useful.
> For modeling the malware propagation over a network.
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> For analyzing the spread of an infectious disease and its control.
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Motivation

m Most studies have been concerned about the persistence and extinction
of the epidemics in their steady state.

> Under what conditions an epidemic dies out quickly.
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Motivation

m Our recent work studied the transient dynamics of S| epidemic spreading.

> Non-negligible amount of time for a patch or vaccine to become available after the
outbreak of an epidemic.

> We developed a tighter upper bound which allows us to predict the likelihood of
each node being infected after any time t.
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= C.-H. Lee, S. Tenneti, and D. Y. Eun, “Transient dynamics of epidemic spreading and its mitigation on large networks,” in ACM MobiHoc, 2019.



Motivation

m Software patching process is multi-step and complex.
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m Possible failure in each round of software patching process leads to
non-negligible delay.

= N. Dissanayake, M. Zahedi, A. Jayatilaka, and A. Babar, “Why, how and where of delays in software security patch management: An empirical
investigation in the healthcare sector,” in ACM CSCW, 2022.



Problem Formulation

m Objective: Maximize the expected # of nodes that are saved by
vaccinating on a graph G in the presence of patching delay T and
under a limited patching budget b.
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Problem Formulation

m Objective: Maximize the expected # of nodes that are saved by
vaccinating on a graph G in the presence of patching delay T and
under a limited patching budget b.
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Problem Formulation

m Objective: Maximize the expected # of nodes that are saved by
vaccinating on a graph G in the presence of patching delay T and

under a limited patching budget b. |
Patching along

the boundary
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Problem Formulation
m o identify the boundary, we introduce a notion of ‘critical edges’ - the
edges that connect a healthy node to an infected node.

m The edge weight is the probability of an edge being critical at the
patching delay time T.

. 8% . w; i (T) = ai; [2:(T)(1—2;(T)) + (1—2:(T))z;(T)]
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* Please refer to our paper for more details.



Problem Formulation
m To identify the boundary, we introduce a notion of ‘critical edges’ - the
edges that connect a healthy node to an infected node.

m The edge weight is the probability of an edge being critical at the
patching delay time T.
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* Please refer to our paper for more details.



Problem Formulation

m Formulate the problem as Normalized Cut (NCut)

min NCut(U) = min

Cut(U,U¢) Cut(U,U*)
UCN UCN

vol(U) i vol(U*®)

where Cut(U,U°) =Y Y w;
el jeUc

* Please refer to our paper for more details.



Problem Formulation

m Formulate the problem as Normalized Cut (NCut)

min NCut(U) = min (
UCN UCN

where Cut U Uc > > W We flip the edge weights so NCut

partitions along the minimum weights.

Cut(U,U¢) Cut(U,U*)
vol(U) i vol(U*®) )

1eU jeUc

m NCut relaxed form: n&n v' Lo
v b

subject to ||[v||? = vol(N) and v D21 = 0.

* Please refer to our paper for more details.



Constrained NCut Problem

Solution of vanilla NCut Initial state Solution of constrained NCut
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Initial state

The NCut Problem Pitfall S
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* Please refer to our paper for more details.



Constrained NCut Problem

min v ' Lo
VERM

subject to ||v]|* = vol(IN) and Bv = c.

» Utilize epidemic dynamics as linear constraints
» Steer the solution toward a more meaningful

boundary of critical edges
» Successfully separate infected region

* Please refer to our paper for more details.
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Framework
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Choosing constrained nodes
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m [nfected constraints: Initially infected nodes and their one-hop
neighbors.

m Healthy constraints: Top-K nodes with the longest shortest-path from
the source of infection.

* Please refer to our paper for more details.



Node Selection for Patching under Budget Constraint

Cut set

m Repeatedly patch the highest degree healthy node on the boundary
until the cut set or the budget is empty.

m If the budget is still available, patch unselected one-hop neighbors of
the nodes just vaccinated (highest degree first).

* Please refer to our paper for more details.



Simulation Setup

m Datasets
> Synthetic graph: Stochastic Block Model (SBM) with k communities.
> Real-world graph: Facebook network.

m Baseline vaccination policies
> Degree policy: Vaccinate the top-k highest degree nodes.
> Eigen policy: Vaccinate the top-k highest eigenvector centrality nodes.

> Reactive policy: Vaccinate the top-k nodes with the highest predicted infection
probability at delay T.



Simulation Results: Synthetic Graphs

m The expected number of infected nodes by each vaccination policy
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> Observation 1: As the patching delay (T') increases, our Delayed policy becomes significantly
more effective.

> Observation 2: Improvements of the Delayed policy over the Reactive, Eigenvector, and Degree
policies are up to 50%, 83.3%, and 83.3%.



Simulation Results: Synthetic Graphs

m [mpact of the vaccination budget with different delayed time
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> Observation 1: The number of infected nodes increases as the delay time increases,
while it decreases as the budget increases.

> Observation 2: Our delayed policy achieves the lowest number of infected nodes.



Simulation Results: Real-world graph

m The expected number of infected nodes with varying values of delayed
time and vaccination budget.

4000 4000 4000 4000
—— [E).egree 4 ¢ [E).egree A 4 Eegree y A _: —t— = —% —4 [E).egree '/t = = —$— —§—A
igen igen . igen — igen ‘
3000 —&— Reactive ”‘//' 3000 —&— Reactive ’/* " 3000 —h— Rea(twe,‘ _: —h—K— *—| 3000 —&— Reactive — *—k—k
—J— Delayed /- e Delayed ’f —d : e _’* % Delayed —J— Delayed
2000 / 2000 " 2000 v 2000 /
4 / f/
e = % V
1000 //t.;/i___*_ _*--Jk 1000 // 1000 2 1000
',:/__ —
0 !‘/‘ i 0 0 i/ 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time Time Time Time
(@ T=5 b=10% (b) T =10, b= 10% (©) T =15 b= 10% (d T =20, b=10%
4000 4000 4000 4000
—4— Degree —4— Degree —— Degree —4— Degree
3000 Eigen 3000 Eigen 3000 Eigen 3000 Eigen i ‘t + +— -+
—&— Reactive 4 —&— Reactive Y ’ —&— Reactive ; _: —&— Reactive 4_ J—d—h—k
—k— Delayed /’-—-""_( —#— Delayed ) -/—"t-:{‘:_ A —k— Delayed % —k— Delayed
2000 " 2000 A/-""’/* 2000 y 4 2000 r's
- ~ g = L e
N / N R ) */
1000 &k —A——h—4—4 1000 t/ ok 1000 -~ 1000
i***+** J
0 !/* 0 ot 0
100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time Time Time Time
() T=5, b=20% () T =10, b =20% (g) T =15, b =20% (h)y T'=20, b =20%

> Observation: Our delayed policy remains effective under longer patching
delay, while other policies fail as the population becomes almost infected.



Conclusion

m We introduce a novel mathematical framework for effective patching under
limited resources and in the presence of patching delays.

m Our policy identifies a minimum-cut boundary to separate infected nodes
from the healthy region and optimally select which nodes to patch.

m We demonstrate the superior performance over existing baselines through
extensive experiments on synthetic and real-world networks.

m We provide a foundational step toward designing vaccination strategies for
general networks under realistic delay and resource constraints.
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